加法乘法原理和几何计数: 加法原理: 如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……,在第n类方法中有mn种不同方法,那么完成这件任务共有:m1+ m2....... +mn种不同的方法。 关键问题: 确定工作的分类方法。 基本特征: 每一种方法都可完成任务。 乘法原理: 如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法……不管前面n-1步用哪种方法,第n步总有mn种方法,那么完成这件任务共有:m1×m2.......×mn种不同的方法。 关键问题: 确定工作的完成步骤。 基本特征: 每一步只能完成任务的一部分。 直线: 一点在直线或空间沿一定方向或相反方向运动,形成的轨迹。 直线特点: 没有端点,没有长度。 线段: 直线上任意两点间的距离。这两点叫端点。 线段特点: 有两个端点,有长度。 射线: 把直线的一端无限延长。 射线特点: 只有一个端点;没有长度。 数线段规律:总数=1+2+3+…+(点数一1); 数角规律=1+2+3+…+(射线数一1); 数长方形规律:个数=长的线段数×宽的线段数: 数长方形规律:个数=1×1+2×2+3×3+…+行数×列数 二年级下册数学思维训练题100道 四年级下册数学简便运算题600道 二年级数学题100道加减混合运算题 质数与合数: 质数: 一个数除了1和它本身之外,没有别的约数,这个数叫做质数,也叫做素数。 合数: 一个数除了1和它本身之外,还有别的约数,这个数叫做合数。 质因数: 如果某个质数是某个数的约数,那么这个质数叫做这个数的质因数。 分解质因数: 把一个数用质数相乘的形式表示出来,叫做分解质因数。通常用短除法分解质因数。任何一个合数分解质因数的结果是唯一的。 分解质因数的标准表示形式: N= ,其中a1、a2、a3……an都是合数N的质因数,且a1 求约数个数的公式: P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1) 互质数: 如果两个数的最大公约数是1,这两个数叫做互质数。 约数与倍数: 约数和倍数: 若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。 公约数: 几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。 最大公约数的性质: 几个数都除以它们的最大公约数,所得的几个商是互质数。 几个数的最大公约数都是这几个数的约数。 几个数的公约数,都是这几个数的最大公约数的约数。 几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。 例如:12的约数有1、2、3、4、6、12; 18的约数有:1、2、3、6、9、18; 那么12和18的公约数有:1、2、3、6; 那么12和18最大的公约数是:6,记作(12,18)=6; 求最大公约数基本方法: 分解质因数法:先分解质因数,然后把相同的因数连乘起来。 短除法:先找公有的约数,然后相乘。 辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数。 公倍数: 几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。 12的倍数有:12、24、36、48……; 18的倍数有:18、36、54、72……; 那么12和18的公倍数有:36、72、108……; 那么12和18最小的公倍数是36,记作[12,18]=36; 最小公倍数的性质: 两个数的任意公倍数都是它们最小公倍数的倍数。 两个数最大公约数与最小公倍数的乘积等于这两个数的乘积。 求最小公倍数基本方法:1、短除法求最小公倍数;2、分解质因数的方法 ![]() |